
Transactions of the ASABE

Vol. 52(3): 759-769 � 2009 American Society of Agricultural and Biological Engineers ISSN 0001-2351 759

EVALUATION OF A HYPERSPECTRAL OPTICAL-  
MONTE CARLO REMOTE SENSING MODEL

IN A WATER TANK STUDY

V. Garg,  I. Chaubey,  S. Singh

ABSTRACT. A physical hyperspectral optical-Monte Carlo (PHO‐MC) model for computing reflectance from a body of water
is evaluated in a water tank experiment. Reflectance calculation in the model is simulated based on Monte Carlo simulations
of photon packet paths in three dimensions. Simulated reflectance was compared with the measured reflectance. The model
was evaluated for varied depths of water and different characteristics of the tank bottom. Significant differences were found
in the measured reflectance even for clear water due to change in water depth and bottom reflectance characteristics of the
water tank. The model reproduced measured reflectance over the entire spectral region extending from 400 to 800 nm for these
varied conditions. Model calculation showed that the effect of diffuse radiation and its specular reflection from the air‐water
interface contribute significantly to reflectance. The relative error in predicted reflectance for all 41 wavelengths evaluated
in this study increased from 5.2% to 25.4% when diffuse radiation and its specular reflections were ignored in the model
formulation.

Keywords. Hyperspectral model, Monte Carlo simulation, Physical hyperspectral‐Monte Carlo model, Remote sensing.

ptical remote sensing is used for assessing and
monitoring the quality of water in lakes, rivers,
and other water bodies by making reflectance
measurements.  In order to extract accurate

estimates of water quality parameters, such as suspended
matter, chlorophyll concentration, and dissolved organic
matter, from measured reflectance, it is critical to have an
accurate and reliable remote sensing model based on light‐
matter interactions. Remote sensing models fall mainly into
two categories: empirical and physical. In empirical models,
a direct relationship between the measured values of water
quality parameters (in terms of their concentrations) and the
measured reflectance is developed. Physical models
incorporate the actual interactions between light and matter
in terms of physical characteristics such as refractive index,
scattering, absorption, etc.

A number of empirical models have been reported in the
literature to evaluate inland water quality using remote
sensing data (Ritchie et al., 1990; Lathrop et al., 1991;
Ritchie and Cooper, 1991; Harrington et al., 1992; Schiebe
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et al., 1992; Choubey, 1994; Ritchie et al., 1994; Yacobi et al.,
1995; Fraser, 1998; Allee and Johnson, 1999; Yang et al.,
1999; Baruah, 2000; Brivio et al., 2001; Kloiber et al., 2002;
Chipman et al., 2004; Panda et al., 2004). However, major
drawbacks of these models are variation of model input
parameters from one model to other because they are specific
to water bodies for which they were developed, and a need for
ground‐truth data to calibrate and validate the underlying
statistical relationships (Marcus and Fonstad, 2007; Sudheer
et al., 2006). Moreover, a water quality estimated by an
empirical model, such as suspended matter or chlorophyll
concentration,  has been reported to change over time even for
the same location (e.g., Allee and Johnson, 1999). These
drawbacks of empirical models are presumably due to the
fact that they cannot consider the geometry involved with the
observation direction and the solar illumination direction
(Morel and Gentili, 1993, 1996), bottom effects (Tolk et al.,
2000; Lodhi and Rundquist, 2001; Mobley and Sundman,
2003; Mobley et al., 2003), and vertical variations of the
water constituents (Han and Rundquist, 2003; Nanu and
Robertson, 2004). In addition, when deriving empirical
relationship between one water quality parameter and
reflectance,  these models ignore the effect of other water
quality parameters.

The physical modeling approach is more complex but
utilizes the full potential of remote sensing for water quality
assessment (Yacobi et al., 1995; IOCCG, 2000; Ritchie et al.,
2003). Current interpretations of the complexity of natural
bodies of water as optical media are uncertain and
controversial (Stramski et al., 2004), suggesting the need for
physical models that consider progressively higher degrees
of complexity (Morel and Maritorena, 2001). Most of the
analytical  solutions of physical models are an approximation
of the radiative transfer equation described by Mobley
(1994). Morel and Prieur (1977) developed a simple
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approximate analytical solution of a physical model to
calculate reflectance. Similar solutions with some variations
in the model form have been considered by others (Gordon
et al., 1975; Kirk, 1984; Aas, 1987). These simplified
models, generally referred to as semi‐empirical models, have
found wide applications by researchers (Stramski et al.,
2004). However, these models considered radiative transfer
of a light beam in one dimension only, used simplified
assumption of infinite water depth, and ignored the effect of
multiple scattering (Mobley et al., 1993; Mobley, 1994;
Stamnes et al., 2003). In addition, validations of these semi‐
analytical  models under standard testing conditions have
been lacking.

From the perspective of accuracy, geometric flexibility,
and systematic and modular simulation, the most effective
approach to solve remote sensing reflectance using a physical
model is the Monte Carlo simulation technique (Doyle and
Reif, 1998). The differences between analytical approximate
solutions and Monte Carlo simulations are the accuracy and
computational  efficiency of the methods. Even though
approximate analytical solutions are computationally
efficient, they yield less accurate results. On the other hand,
Monte Carlo methods are known to be computationally
burdensome due to the large number of simulations involved;
however, they have greater accuracy of model output.

Physical models can be used to derive inherent optical
properties (IOPs) if concentration data of the optically active
constituents (OACs) are collected. This is generally done
using inverse modeling in which IOP parameter values are
estimated using known concentration or reflectance data.
Once the IOP values are known, the model can be applied to
estimate reflectance or concentrations using a forward
modeling approach. Forward modeling validation of most
physical models has relied on a comparison of their
performance either with other models or against hypothetical
data. It is, however, possible that a remote sensing model can
be validated in controlled water tank experiments. To the best
of our knowledge, none of the physical models has been used
to either verify or explain the dynamics of reflectance in
water tank studies under controlled conditions, although
many studies have been reported that developed some of the
empirical models using water tank experiments (Mantovani
and Cabral, 1992; Bhargava and Mariam, 1990; Bhargava
and Mariam, 1991a, 1991b; Han and Rundquist, 1996; Han,
1997; Lodhi et al., 1997; Han and Rundquist, 2003).
Validation of the remote sensing model with a water tank
study can help to identify the accuracy and most significant
parameters that need to be considered in the model.

The main objective of this study was to evaluate a physical
hyperspectral optical‐Monte Carlo (PHO‐MC) model by
comparing the model‐simulated reflectance with the
measured reflectance from a water tank study. The
measurements were made by changing the water depth to
study the effect of water depth, and by changing the bottom
characteristics  to analyze the effect of bottom conditions.
The PHO‐MC model was used to study the effect of diffuse
light and tank geometry on the prediction accuracy of the
model using a forward modeling approach. The model was
also used to interpret the light absorption characteristics at
different wavelengths and varying water depths.

MATERIALS AND METHODS
PHYSICAL HYPERSPECTRAL OPTICAL-

MONTE CARLO (PHO‐MC) MODEL
A Monte Carlo model code of light propagation in tissue

(MCML) by Prahl et al. (1989) was modified to develop the
PHO‐MC model for this study. In Prahl's MCML model, the
photon packet tracing started from the origin (a point at the
surface of the tissue) into the tissue by randomly selected
trajectory in spherical coordinates. The photon packet was
modeled to arrive orthogonally at the tissue surface, and the
interaction of the photon packet in the tissue was based on the
scattering coefficient of only one OAC in a layer. Inside the
tissue, fate of photons was modeled in terms of scattering,
absorption, undisturbed propagation, internal reflection, or
transmittance  out of the tissue. The model recorded the
position of the photon when it was absorbed. Similarly, the
model recorded the reflection or transmission when the
photon escaped from the tissue. The photon could transmit
from the bottom of the tissue.

An outline of the PHO‐MC model is presented in figure 1.
Major modification of the MCML model to develop the
PHO‐MC model included: (1) starting of photon packet
tracing before it hit the water surface, (2) photon packet
direction determined based on actual incident light
condition, (3) calculation of specular reflection for a photon
packet arriving at an angle other than orthogonal angle on the
air‐water interface, (4) more than one OAC considered in
every water layer (fig. 2), and (5) bottom surface modeled as
a Lambertian surface. The Monte Carlo method simulates a
process under consideration as a stochastic process (Doyle
and Rief, 1998). In the PHO‐MC model, the process of a
photon packet movement and its state were considered as a
stochastic process in a three‐dimensional space. A photon
packet was moved one step, and then its directional and state
changes in the medium were defined by suitable probability
distributions based on the various optical processes inherent
in light‐water interaction. Instead of modeling the fate of a
single photon, a photon packet is considered in the PHO‐MC
model to improve the accuracy of Monte Carlo simulations
(Mobley, 1994; Prahl et al., 1989). Apparent optical
properties (AOP), such as reflectance Rrs(λ), angular fluxes,
radiance, and irradiance, were calculated by averaging the
fate of running photon packets a sufficiently large number of
times.

Extra inputs were created in the PHO‐MC model to
provide information about the incident light solar zenith
angle, and ratio of diffuse light to total light. Ratio of diffuse
light to total light defined the probability of photon packet
trajectory as a photon packet of direct light or a photon packet
of diffuse light. A random number (ξ, uniformly distributed
between 0 and 1) was drawn. If the generated random number
was less than the ratio of the diffuse light to the total light,
then the photon packet was considered to be from a diffused
source; if it was greater, the photon packet was considered to
be from a direct source. If the photon packet was from a direct
light source, then its direction of incidence on the water
surface was the known solar zenith angle. In the case of a
diffused light photon packet, its incident direction on the
water surface was calculated based on the assumption of
uniform distribution of diffused radiance of the downwelling
light.
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In the PHO‐MC model, photon packet interactions with
the water surface were included. Once the angle of incidence
of the photon packet on the water surface is defined, its final
angle of transmission into the water surface was calculated
using Snell's law. Also based on incident angle of the photon
packet, specular reflection from the water surface was
calculated using the Fresnel reflection coefficient. The
photon packet weight was reduced from unity by the reflected
part before the photon packet entered the water surface. The
amount and direction of specular reflection were recorded for
the final calculation of reflectance.

In the MCML model, the photon packet was allowed to
transmit out from the bottom layer. This was modified in the
PHO‐MC model. The bottom layer was considered a
Lambertian reflecting surface. Therefore, the photon packet
hitting the bottom layer was not transmitted out of the water
body bottom. Instead, part of it was absorbed and the rest was
reflected back. The absorbed part was calculated based on the

known optical properties of the bottom layer, which were
provided in the model as an extra input.

The MCML model calculated AOP values at one
particular wavelength. This was modified in the PHO‐MC
model to generate a hyperspectral graph of the AOP of an
aquatic medium. The MCML model was modified so that the
wavelength specific data of IOP values of the aquatic
medium can be input for any number of selected
wavelengths. The PHO‐MC model ran for each set of
wavelength‐specific  data and generated a combined file of
AOP output for each wavelength, thus providing
hyperspectral data.

WATER TANK EXPERIMENTAL SETUP

Remote sensing measurements in the water tank were
conducted at the Arkansas Agricultural Research and
Extension Center (36:05:46.8 N, 94:10:28.5 W NAD83,
1294 ft NAVD88), at the University of Arkansas. The setup
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Figure 1. Flowchart of the PHO‐MC model for water quality assessment using photon beam random walk in a three‐dimensional space. Parameter
� is a random number uniformly distributed between 0 and 1, �s is the step size of photon packet movement, and R(�i) is the Fresnel reflection coefficient
at an angle of incidence �i.
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Figure 2. Schematic of the Cartesian (x, y, z) coordinate setup on multilayered water: � is light angle (�sun = sun angle or incident direct light angle;
� = angle of transmission), r = unit vector, and � is azimuth angle.

consisted of a circular tank (1.67 m diameter � 0.80 m
height) with the bottom and side walls painted black (fig. 3).
The tank was filled with tapwater to depths of 0.10, 0.20,
0.40, 0.50, 0.60, and 0.75 m, and remote sensing
measurements were made at each water depth. Afterwards,
1000 g of silty loam soil (USDA: loamy, siliceous, subactive,
thermic Lithic Dystrudepts) was added in the tank when the
water depth was 0.75 m. The suspended matter was allowed
to settle to the bottom of the tank. On the next day, reflectance
measurements were taken when the water in the tank was
clear and the sediment had settled to the tank bottom.

The reflectance measurements were made using a dual‐
sensor spectroradiometer (ASD FieldSpec Pro, Analytical
Spectral Devices, Inc., Boulder, Colo.). All measurements
were made outdoors under natural light conditions. Data
were collected in the wavelength range of 400 to 800 nm at
1.438 nm intervals using two sensors, i.e., reference sensor
and target sensor, simultaneously. The reference sensor is
used for calibration reference, and the target sensor is used for
reflectance measurement of a target. The reference sensor of
the instrument measured downwelling solar radiance, Lu(λ),
at wavelength λ from a Lambertian Spectralon reference
panel. The reference sensor had a 25° field of view. It was

Figure 3. Outline of the experimental setup for water tank study.

mounted 0.03 m above the Spectralon reference panel,
resulting in a circular view of 0.013 m diameter. The target
sensor, with an 8° field of view, measured upwelling
radiance, Lw(λ), of the target surface. The target sensor was
placed 0.3 m above the water surface and positioned in the
nadir direction for the 0.75 m water depth. The position of the
target sensor was kept constant; therefore, the distance
between the target sensor and the water surface varied for
data collected at other water depths. No artificial lighting was
provided in the setup; only the natural light was used. Data
were collected on 17‐18 October 2003 under clear sky
conditions during 1100 h to 1200 h. From the measured
values of Lu(λ) and Lw(λ), the reflectance, R(λ), was
calculated as:

( ) ( )
( )�L

�L
100�R

u

w
�=    (1)

The reference sensor measured the total light. To measure
the diffuse light, Ld(λ), we blocked the direct light by placing
a black opaque sheet between the sun and the reference panel
using the method given by Singh et al. (2008). The diffused
light ratio was calculated as Ld(λ)/Lu(λ).

The reflectance of the black surface at the tank bottom was
measured before filling the tank in order to provide measured
bottom characteristics as input in the PHO‐MC model. The
measured bottom reflectance is shown in figure 4a. Dry silty
loam soil used in the experiment was spread in a 0.01 m thick
layer over a black surface, and its reflectance, RSoil(λ), was
measured (fig. 4b). The ratio of diffused light to total light,
rD(λ), was computed by the measurements done by the
reference sensor (fig. 5). It was clear that the black surface at
the bottom had almost constant reflectance (2%) over all
wavelengths between 400 and 800 nm. Sun zenith angle was
obtained for the date, time, and location of the experiment
from the Astronomical Applications Department of the U.S.
Naval Observatory (http://aa.usno.navy.mil/; assessed on 30
Aug. 2006). The average value of the sun's zenith angle was
46.5° during the experiments. The refractive index of air was
1.000. The refractive index of water at different wavelengths
was taken from Mobley (1994) and varied from 1.344 to
1.331, over the 400 to 700 nm wavelength range at 10°C for
fresh water. For wavelengths beyond 700 nm, the water
refractive index was assumed equal to its value at 700 nm.

The values of pure water scattering coefficient bw(λ) were
taken from Smith and Baker (1981), which are commonly
employed for remote sensing studies (Stramski et al., 2004).
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Figure 4a. Reflectance of the black painted bottom of the water tank.

Figure 4b. Reflectance, Rsoil(�), of 0.01 m thick layer of dry soil spread
over a black surface.

Figure 5. Ratio of diffuse light to total light at the time of water tank study
at 11:30 a.m. on 17 October 2003.

The values of absorption coefficient aw(λ) over the
wavelength range 400 to 700 nm were obtained from Pope
and Fry (1997). It should be noted that Pope and Fry (1997)
did not have the aw(λ) values for the 700 to 800 nm
wavelength range; these values were taken from Smith and
Baker (1981).

To reduce the level of statistical noise, the PHO‐MC
model was run for many unit‐weight photon packets. To

Table 1. Dependence of statistical noise in the PHO‐MC predicted
reflectance on the number of photon packets used for simulation.

The PHO‐MC model was run five times for each number of
photon packets keeping all the input parameters constant.

No. of Photon
Packets in
Simulation

Mean
Reflectance

(M, %)

Standard
Deviation

(SD)

Coefficient of
Variance (CV)

(= M × 100/SD)

105 2.05 0.28 13.72
106 1.95 0.08 3.97
107 1.89 0.01 0.62

ascertain the level of statistical noise, the PHO‐MC model
was run five times for the same model inputs and number of
photon packets. The PHO‐MC model results varied each
time, as expected from a stochastic model. This variation of
the PHO‐MC model reduced as the number of photon packets
used increased. Table 1 presents the reflectance and its
statistical uncertainty when 105, 106, and 107 photon packets
were used to simulate the reflectance (RS(570)0.75, i.e.,
simulated reflectance at 570 nm wavelength and 0.75 m
water depth) five different time for each set of photon packet
numbers. The standard deviation of RS(570)0.75 decreased as
the number of photon packets increased for the simulation.
The variance of RS(570)0.75 for 107 photons was 0.62. The
computational  time required for the model to complete
tracing of a single photon packet trajectory was typically 4
μs. This was low enough for carrying out large sample
calculations.  The total number of photon packets used in the
PHO‐MC model based on these results was 107, as this
allowed to complete hyperspectral reflectance simulation at
41 wavelength in about 27 min of computer time.

RESULTS AND DISCUSSION
EFFECT OF WATER DEPTH

The PHO‐MC model was run to simulate reflectance
RS(λi)dj at six different water depths (dj = d1 to d6) and 41
different wavelengths (λi = λ1 to λ41). The six water depths
were 0.75, 0.60, 0.50, 0.40, 0.20, and 0.10 m, and the 41
wavelengths ranged from 400 to 800 nm at 10 nm intervals.
The original reflectance data collected at 1.438 nm intervals
was used to resample data at the wavelengths of the study
using resampling software provided with the spectro-
radiometer. Measured reflectance of the black tank bottom
and measured total light and diffuse light levels at the time
of the experiment were used as inputs in the model.
Geometric corrections due to the finite horizontal extent of
each water layer were applied by including only the photon
packets emerging from a circular area within the area of the
tank. Figure 6 presents the measured RM(λi)dj versus
PHO‐MC model simulated reflectance, RS(λi)dj, of the water
surface for 246 conditions (due to the six water depths and 41
wavelengths) of the study. The overall simulation error (RE,
%) was computed as the average of the relative error of
simulation across the entire range of wavelengths and depths
as:
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A rather low value of RE (6%), a significant Pearson
product‐moment  correlation coefficient (r = 0.99, p < 0.01),
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Figure 6. PHO‐MC model simulated reflectance (RS(�i)dj) versus
measured reflectance (RM(�i)dj) of the clear water surface in a tank study
for 246 combinations of six different water depths (dj = d1 to d6) and 41
different wavelengths (�i = �1 to �41). The six water depths were 0.75,
0.60, 0.50, 0.40, 0.20, and 0.10 m, and the 41 wavelengths ranged from 400
to 800 nm at 10 nm intervals.

a near‐one value of the regression coefficient (1.07), and a
small offset (‐0.03) of the regression line illustrate the
effectiveness of the remote sensing model for simulating
reflectance at any of the wavelengths in the rage of 400 to 800
nm of the visible light spectrum and at varying depths of
water. The RE of 6% may be due to the assumption of
uniform radiance of downwelling diffused light on the water
surface, the Lambertian surface assumption for the bottom of
the tank, the use of tapwater that was modeled as pure water,
and/or instrumental error.

Reflectance  values in general decreased at all
wavelengths when the water depth increased. Figure 7
presents the reflectance for the maximum and minimum
water depths of the study. Decrease in reflectance values for
deeper water was greater in the red and infrared wavelength
regions. This higher reduction is due to a sharp increase in the
water absorption characteristics in the red and infrared
regions. Therefore, water depth can be a significant factor
affecting the reflectance in a shallow water body, and this
model can account for these changes in reflectance due to
water depth. The model should also be able to accurately
capture the reflectance behavior of deeper water bodies since
it is a physics‐based model and has capabilities to account for
bottom characteristics (described below) and horizontal and
vertical dimensions of the water body. The results of the
model validations with known optical properties of materials
present in a deep water body (Beaver Reservoir) located in
Arkansas are provided by Garg (2006) and Garg et al. (2009).

EFFECT OF BOTTOM CHARACTERISTICS
Measured remote reflectance of 0.75 m deep clear water

with a black painted tank bottom, RM(λ)0.75(black bottom), was
significantly different (fig. 8) from measured reflectance of
similar 0.75 m deep clear water with the tank bottom covered
with suspended sediments, RM(λ)0.75(sed bottom). The value of
RM(λ)0.75(sed bottom) was higher at all wavelengths compared
to RM(λ)0.75(black bottom). This variation in reflectance due to
different bottom characteristics of a shallow clear water body
shows the importance of considering bottom characteristics

Figure 7. Measured and PHO‐MC model simulated reflectance for 0.75
and 0.1 m water depths in a tank with a black bottom. RM(�)0.1 represents
measured reflectance at 0.1 m water depth and wavelength (�). RS(�)0.1
represents PHO‐MC model simulated reflectance at 0.1 m water depth
and wavelength (�).

in remote sensing models. These results indicate that change
in the reflectance characteristics of a water body bottom can
significantly change the reflectance of that water body,
especially if the water body is shallow and has comparatively
clear water.

The PHO‐MC model was used to simulate the reflectance
of 0.75 m deep water for the case when the tank bottom was
covered with sediments, RS(λ)0.75(sed bottom). For this
simulation, reflection characteristics of the black bottom
(fig. 4a) were replaced in the input parameter values of the
PHO‐MC model with the measured reflection characteristics
of dry soil (fig. 4b). Simulated and measured reflectance
values from the 400 to 800 nm wavelength range at 10 nm
intervals were compared. Figure 9 presents the measured
RM(λ)0.75(sed bottom) versus PHO‐MC model simulated re-
flectance,  RS(λ)0.75(sed bottom), of the water surface for the 41
wavelengths of the study. A significant Pearson product‐
moment correlation coefficient (r = 0.97, p < 0.01), a near‐
one value of regression coefficient (0.92), and a small offset
(0.58) of the regression line between RS(λ)0.75(sed bottom) and
RM(λ)0.75(sed bottom) illustrate the effectiveness of the remote

Figure 8. Measured reflectance at 0.75 m clear water depth in a water tank
study with a black painted tank bottom and with the tank bottom covered
with suspended sediments.
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sensing model for simulating the reflectance when bottom
reflection characteristics were changed. This shows the
model's flexibility in accounting for variations in water body
bottom characteristics, which may be an important
consideration in a shallow water body.

EFFECT OF DIFFUSE LIGHT AND TANK GEOMETRY
The hyperspectral spectrum of reflectance of water

surface simulation in the PHO‐MC model considers the
diffused light, the specular reflection of diffused light, and
the actual boundary conditions of the tank studies (set 1). This
section identifies the error introduced in the reflection
simulation by ignoring all or some of these. For this
discussion, the 0.75 m water depth in the experimental tank
is considered. The simulated reflectance for this case (set 1)
as a function of wavelength, RS(λ)0.75(set 1), is compared with
the measured reflectance, RM(λ)0.75, in figure 10a. The
reflectance predicted by the PHO‐MC model reproduced the
measured values quite well at all wavelengths. The overall
simulation relative error, RE0.75(set 1), of simulation across
the entire range of 41 wavelengths is low (5.2%).

The flexibility of the model allowed investigating the
effect of other variables. For example, when diffused light
was ignored in the PHO‐MC model simulations and no
adjustments were made due to sensor location (set 2), the
RE0.75(set 2) was found to be 25.1%. This is considerably
higher compared to set 1. The simulated reflectance for this
case, RS(λ)0.75(set 2), is compared with the measured
reflectance,  RM(λ)0.75, in figure 10b. It is clear from this
figure that the simulated results deviate from measured
values at all wavelengths. The assumption used in set 2 of all
downwelling light being direct light is common in many
modeling exercises due to the absence of measured
information on diffused light. It is also worth noting that the

Figure 9. PHO‐MC model simulated reflectance RS(�)0.75(sed bottom)
versus measured reflectance RM(�)0.75(sed bottom) of the clear water
surface in a water tank study for a water depth of 0.75 m and with the tank
bottom covered with soil. Hyperspectral reflectance was simulated at 41
different wavelengths (�) ranging from 400 nm to 800 nm at 10 nm
intervals.

model underestimates the reflectance at all wavelengths. A
significant error in the modeled reflectance when the diffuse
light is ignored indicates that the reflectance cannot be
accurately modeled using only direct light (fig. 10b).

Another model simulation was run (set 3) in which
measured diffused light was included in the model input
parameters but specular reflection of the diffuse light was not
considered in calculating the reflectance. The simulated
reflectance,  RS(λ)0.75(set 3), for set 3 is presented in figure
10c, along with the measured reflectance, RM(λ)0.75. It is
observed that the RE of set 3 increased slightly, from 25.1%
for set 2 to 25.4% for set 3.

In set 4, the values of diffused light specular reflection
were added to the reflectance of set 3. The simulated
reflectance,  RS(λ)0.75(set 4), for set 4 followed the measured
RM(λ)0.75, as presented in figure 10d. The contribution of
diffused light to specular reflection for the current study was
computed by using the Fresnel equation and the measured
ratio of diffused to direct light for the nadir‐viewing 8°
foreoptic target sensor. It is to be noted that the simulated
reflectances of sets 2 and 3 were always lower than the
measured reflectance (figs. 10b and 10c). Adding diffused
light specular reflection explained some of the missing
reflectance component of sets 2 and 3. This indicates that, if
specular reflection of diffused light is ignored, model
simulations will underestimate the reflectance. After adding
diffused light specular reflection, the relative error,
RE0.75(set�4), decreased further to 7.2%, a significant
improvement over the value 25.4% for set 3. This shows the
importance of including the contribution of diffused light
specular reflection to reflectance. These results show that
when diffused light is present, its specular reflected
component needs to be accounted for in the model. Doxaran
et al. (2004) also reported that surface reflection effect is
predominant,  and approximate correction leads to large
errors in the retrieved water‐leaving signal.

Note that when diffused light specular reflection was
incorporated in the model (set 4), the simulated values were
on the higher side compared to the measured values at all
wavelengths (fig. 10d). This is in contrast to set 3. Another
important observation from figure 10d is that the simulated
values deviate most from the measured values in the
wavelength range 400 to 570 nm. In fact, this region
contributes most to the overall RE of 7.2%. Lower
wavelengths near 400 nm contribute more to the RE, and the
contribution decreases as the wavelength increases. In the
wavelength range 400 to 570 nm, the water absorption
coefficient is very low, while the scattering coefficient has a
high value. This implies that photons can travel long
distances before they are terminated. Due to this long free
path, the photon packet may emerge from the water at a point
far from the entry point. Since the tank experiment has a finite
extent, and the side walls are black, the far‐traveling photons
are absorbed and do not contribute to upwelling radiance.
This suggests that the assumption of infinite extent of layers
in the current model needs to be modified to account for the
boundary conditions in the experiment. When we accounted
for the actual boundary conditions of the tank, the RE
decreased to 5.2%. These results indicate the importance of
accounting for shoreline boundary conditions in modeling
the reflectance of a body of water.
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Figure 10a. Measured and PHO‐MC model simulated reflectance (set 1)
for 0.75 m water depth. In set 1, light consisted of direct as well as diffused
components. Diffused light specular reflection from the air‐water
interface was added to the simulated reflectance. Water tank side wall
correction was also incorporated in the PHO‐MC model.

Figure 10b. Measured and PHO‐MC model simulated reflectance using
only direct light (set 2) for 0.75 m water depth. In set 2, diffused light and
boundary conditions of the experimental tank were ignored to compare
the model accuracy with the set 1 condition (fig. 10a).

INTERPRETATION OF ENERGY ABSORPTION 
ALONG WATER DEPTH

The PHO‐MC model was used to calculate the absorption
pattern of different wavelengths of light along the water
depth and at the tank bottom. The model was also used to
identify the percent contribution to the reflectance by light at
different radial distances from the measurement point.

Figure 11 shows the percent cumulative absorption of
light for the 400 to 800 nm wavelength range from the surface
to the 0.75 m water depth. The rest of the light was absorbed
by the black bottom of the tank. Due to the lower absorption
coefficient of water for 400 to 450 nm wavelength light, most
of the absorption occurred at the bottom of the tank.
However, most of the infrared light was absorbed along the
depth.

It is interesting to note that the light entering at
approximately  0.80 to 0.90 m distance from the point of
observation contributed more to the reflectance than the light
entering near the point of observation (fig. 12). The light
about 0.70 to 0.80 m away from the point of observation is the
probably the light that reaches the bottom and then reflects

Figure 10c. Measured and PHO‐MC model simulated reflectance including
direct as well as diffused light (set 3) but without specular reflection for 0.75
m water depth. In set 3, specular reflection of diffused light and the boundary
conditions of the experimental tank were ignored to compare the model
accuracy with sets 1 and 2 conditions (figs. 10a and 10b).

Figure 10d. Measured and PHO‐MC model simulated reflectance with
direct and diffused light when specular reflection of diffused light is
included in the PHO‐MC model (set 4) for 0.75 m water depth. In set 4,
boundary conditions of the experimental tank were ignored to compare
the model accuracy with sets 1, 2, and 3 conditions (figs. 10a, 10b, and 10c).

up, contributing to the reflectance. This may be an important
consideration whenever reflectance data are collected in a
water body using an observation platform such as a boat. The
observation platform on which the target sensor is mounted
should not be within ‐90° to 90° azimuth angle and should not
block the light that may actually be contributing more of the
reflectance at the measurement point. This information is
also important for showing that the reflectance near the sides
of the water body will have a different reflectance spectrum
due to absence of light from one side of the water body.

APPLICATION OF PHO‐MC MODEL FOR 
WATER QUALITY ASSESSMENT

Rapid assessment of water quality and hydrologic
conditions over greater temporal and spatial scales is one of
the main advantages of remote sensing models compared to
traditional in situ data collection and laboratory analyses.
Accurate interpretation of remote sensing signals to derive
water quality information requires knowledge of the inherent
optical parameters (IOPs) of water and its optically active
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Figure 11. PHO‐MC model predicted distribution of percent cumulative
light absorption from the surface to 0.75 m below the surface in a water
tank study. The rest of the light was absorbed by the black bottom of the
tank.

constituents (OACs). The PHO‐MC model can be used to
determine the IOP of OACs by inverse modeling. Generally,
assessment of suspended matter IOP values is one of the most
difficult problems to solve (Arst, 2003), primarily because
suspended matter is a mixture of organic (dead algae, humic
particles, detritus, bacteria, virus) and mineral particles.
Further, there exists a great variability in the constituents of
suspended matter from one water body to another, and
temporal variability within the same water body.

If the OAC concentration data are collected, then the
PHO‐MC model can be effectively utilized to determine
IOPs using an inverse modeling approach. Garg et al. (2009)
successfully determined the IOP of suspended matter for
concentrations ranging from 0.24 to 560 g m‐3 using the
PHO‐MC model with an inverse modeling approach. Once
the IOPs of the OACs in the water are known, the PHO‐MC
model can be used to estimate concentrations of OACs based
on measured reflectance data and known IOPs either by using
forward modeling or by generating a library of spectral look‐
up tables that relate observed spectral reflectance to the
characteristics  of the water column, such as bottom type,
water depth, and concentrations of DOM, suspended matter,
and chlorophyll. A successful application of the PHO‐MC
model in estimating the concentrations of SM, DOM, and
chlorophyll in the Beaver Reservoir in Arkansas is provided
by Garg (2006) and Garg et al. (2009). Many other
researchers have successfully demonstrated estimation of
water quality parameters and their IOPs using these
approaches and Hydrolight, a commercially available remote
sensing model (Mobley et al., 2005; Marcus and Fonstad,
2007).

Figure 12. PHO‐MC model predicted contribution to reflectance of a
point at a distance L from the point of observation.

SUMMARY AND CONCLUSIONS
A physical PHO‐MC model based on three‐dimensional

simulations of photon paths was used to calculate reflectance
in a water tank study. The model was capable of calculating
reflectance from a multilayered body of water. The model
was flexible to adopt for variation of solar zenith angle, water
depth, bottom characteristics of the water body, and diffused
light in addition to direct light. To reduce statistical errors and
improve simulation time, the PHO‐MC model used a photon
packet instead of a single photon, and a variable step size
instead of a fixed step size for photon packet movements. The
statistical noise (coefficient of variance) and time of run were
0.6 and 4 μs, respectively. The model was tested and
validated by conducting reflectance measurements on a tank
of water at the University of Arkansas. The model reproduced
experimentally  measured reflectance over the spectral range
of 400 to 800 nm and tank water depths of 0.10 to 0.75 m with
overall relative errors of 6%. Significant correlation was
found between the model‐simulated reflectance and
measured reflectance for water tank experiments with vary-
ing water depths and different bottom characteristics. An
analysis of the experiment suggests that diffused light and its
specular reflection contribute significantly to reflectance and
cannot be ignored. This observation is significant, as these
parameters are often ignored. The study also illustrates that
tank experiments are an important first step in testing and
validating various models of reflectance before they can be
utilized in field experiments to assess water quality.
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